U.S. ENVIRONMENTAL PROTECTION AGENCY REGION 10 1200 SIXTH AVENUE

SEATTLE, WASHINGTON 98101

MAR 2 5 1988

REPLY TO WD-134

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Kenneth D. Brooks, Administrator Division of Environment Idaho Department of Health and Welfare Statehouse Boise, Idaho 83720

Re: NPDES Permit No. ID-002540-2

Cyprus Thompson Creek

Dear ME Brooks:

Enclosed for your use in completing a certification action is a copy of the National Pollutant Discharge Elimination System (NPDES) permit which EPA proposes to reissue.

Comments received on the draft permit (copy enclosed) have not resulted in any permit changes. However, the limitations for lead and zinc in the proposed final permit (Part I.A.l.) have been changed due to a recalculation of the water quality-based limitations and Parts II, III and IV have been modified to incorporate regulatory language required by the Water Quality Act of 1987. We would appreciate receiving the State Certification at your earliest convenience.

Sincerely.

Harold E. Geren, Chief Water Permits and Compliance Branch

Enclosures

cc: Idaho Department of Health and Welfare-DOE, Pocatello

He are also be mispositives largured in the final print: (Part I A. I.)

Het will allow in stream boungsound levels to be substituted as

effluent limitations of the Company to provide data that varifyed

bookground lively for my present ofcedors in the greater

borkground lively for my present of the allowed dischoof greater

effluent gradient tour fortune.

Page 3 of 15 Permit No.: ID-002540-2

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

- A. Specific Limitations and Monitoring Requirements.
 - During the period beginning on the effective date of this permit, and lasting until the expiration date, discharges from outfalls #001 and #002 shall be limited and monitored by the permittee as specified below:

	Effluent Li	mitation	Monitoring Requirements	
Effluent Parameter	Daily Avg. (mg/l)	Daily Max. (mg/l)	Frequency	Sample Type
Flow			Daily	
Total Suspended Solids (TSS)	20.0	30.0	Weekly	Grab
Arsenic		0.490	Monthly	Grab
Cadmium		0.0053	Monthly	Grab
Lead		0.017	Monthly	Grab
Mercury		non-detectable	Monthly	Grab
Copper		0.0245	Monthly	Grab
Zinc		0.165	Monthly	Grab

(NOTE: All metals shall be analyzed as total recoverable.)

- a. The pH shall not be less than 6.0 standard units, nor greater than 9.0 standard units, and shall be monitored weekly by grab samples.
- p. Inere snall be no discharge of floating solids or visible foam in other than trace amounts.
- c. Samples taken in compliance with the monitoring requirements specified above shall be taken in the effluent stream below the settling basins.
- During the period beginning on the effective date of this permit, and lasting until the expiration date, discharges from outfall #003 is authorized. The permittee shall monitor turbidity (above and below the Bruno Creek access road stormwater settling ponds) weekly during February 1 to June 30, and monthly for the other months of the year. This monitoring shall be performed in accordance with requirements of the water quality monitoring program as required by Part I.A.3. below.
 - 3. In addition to the above referenced effluent monitoring requirements, the permittee shall continue to provide for water quality monitoring in accordance with the program agreed upon by the U.S. Forest Service (USFS), Idaho Department of Health and Welfare Division of Environment (IDHW-DOE) and Cyprus, and such future modifications as may be mutually agreed upon by the parties. Instream monitoring results shall be reported quarterly (in March, June, September and December) to EPA and IDHW-DOE at the address given in Part II.C. below.

Calculations for Water Quality -Based Limitations for Cyprus ID-00 2540-2

Parameter Arsenic

Acute Wasteload Allocation (WLA,acute) = 0.72 mg/l
Chronic Wasteload Allocation (WLA,chronic) = 0.91 mg/l
Coefficient of variation (CV) of effluent * 0.60
Monthly sampling frequency required in permit * 1.00 samples/m

Back calculate the long term average (LTA)
that will meet both of the above WLAs:

	Acute	Chronic	
	-	-	
est s	0.555	0.555	
est u, 4d	NA	-0.775	
est u, 1d	-1.618	-0.886	
LTA	0.231	0.481	mg/1
Lowest LTA	=	0,231	mg/1

Using the lowest LTA and CV from above, derive the Maximum Daily and Monthly Average permit limits

Percentile Basis 95th %'ile 99th %'ile

		44-44	and the same of the same of	
	est s2	0.307	0.307	
	est u	-1.618	-1.618	
Maximum I	laily =	0.494	0.720	mg/1
Monthly	n ·	1.000		
in the second se	est s2,	0.307	0.307	
	est u,n	-1.618	-1.618	
Monthly (Average =	0.494	0.720	mg/1

Draft parmit

Parameter: Cadmium

Acute Wasteload Allocation (WLA, acute) = 7.80 ug/1
Chronic Wasteload Allocation (WLA, chronic) = 5.30 ug/1
Coefficient of variation (CV) of effluent = 0.60
Monthly sampling frequency required in permit = 1.00 samples/m

Back calculate the long term average (LTA)
that will meet both of the above WLAs:

	Acute	Chronic
est s	0.555	0.555
est u, 4d	NA	0,985
est u, 1d	0.764	0.874
LTA	2.504	2.795 ug/1
Lowest LTA	e	2.504 up/1

Using the lowest LTA and CV from above, derive the Maximum Daily and Monthly Average permit limits

			Percent:	ile B	asis	
			95th %'ile	99th	%'ile	7
	est	\$2	0.307	(0.307	
	est	u	0.764		0.764	
Maximum	Daily	=	5.347		7.800	ug/1
	-		2.00	334	مام	7.0
Monthly		n =	1.000		ツル	
-	est	52, n	0.307		0.307	
	est	u.n	0.764		0.764	
Monthly	Averag	je =	5.347		7.800	யு/1

Drast permit

Parameter: Lead

Acute Masteload Allocation (MLA,acute) = 164.00 ug/l
Chronic Masteload Allocation (MLA,chronic) = 15.00 ug/l
Coefficient of variation (CV) of effluent = 0.60
Monthly sampling frequency required in permit = 1.00 samples/m

Back calculate the long term average (LTA)
that will meet both of the above WLAs:

	Acute	Chronic
	-	-
est s	0.555	0.555
est u, 4d	NA	2,025
est u, 1d	3.810	1.915
LTA	52,658	7.912 ug/l

Lowest LTA =

7.912 ug/1

Using the lowest LTA and CV from above, derive the Maximum Daily and Monthly Average permit limits

Percentile Basis 95th %'ile 99th %'ile

			A CHIERON	
	est s2	0.307	.: 0.307	
	est u	1.915	1.915	
Maxiaue	Daily =	16.890	24.640 ug/1	
	8	= 101689	= 1017 male	,
Monthly	U =	1.000	, ,,	
- 100	est s2,n	0.307	0.307	
	est u,n	1.915	1.915	
Honthly	Average =	16.890	24.640 ug/1	

Draft permit = .015 mg/e proposed final permit = .017, mg/e

4/47

Parameter: Mercury

Acute Masteload Allocation (MLA, acute) =	4.80 ug/1
Chronic Wasteload Allocation (WLA,chronic) =	0.06 ug/1
Coefficient of variation (CV) of effluent =	0.60
Monthly sampling frequency required in permit =	1.00 samples/m

Back calculate the long term average (LTA)
that will meet both of the above WLAS:

£ ...

		2	Acute	Chronic
		•		-
est :	5		0,555	0.555
est i	U,	4d	NA	-3.548
est i			0.279	~3.658
LTA			1.541	0.030 ug/1
Lower	st	LTA =		0.030 un/1

Lowest LTA = 0.030 ug/1

Using the lowest LTA and CV from above, derive the Maximum Daily and Monthly Average permit limits

Percentile Basis

				1 21 22115	***	PARTIE VIEW	
			95	th I'ile	991	h %'ile	
3	est			0.307	. ,	0.307	
Maxieus			٠	0.064		0.094	ug/1
Monthly		n =	2	1.000		4	
150	est	52,n	1245	0.307		0.307	
		u,n		-3.658		-3.658	
Honthly				0.064		0.094	ug/1

mon-destectable

5/1

Parameter: Copper

Acute Wasteload Allocation (WLA, acute) = 36.00 ug/1 Chronic Wastelpad Allocation (WLA, chronic) = 57.60 ug/1 Coefficient of variation (CV) of effluent = 0.60 Monthly sampling frequency required in permit = 1.00 samples/m

Back calculate the long term average (LTA) that will meet both of the above WLAs:

	Acute	Chronic
est s	0.555	0.555
est u, 4d	NA	3.371
est u, 1d	2.294	3,260
LTA	11.559	30.380 ug/l
Lowest LTA	=	11.559 uo/l

Porrontile Pagie

Using the lowest LTA and CV from above, derive the Maximum Daily and Monthly Average permit limits

		C. W.L. P. MAIL P.	ite basis
		95th T'ile	99th %'ile
	est s2	0.307	0.307
	est u	2,294	2,294
Maximum	Daily-	24.678	36.000 ug/l
060		= ,024	678 myle
Honthly	· n •	1.000	116
	est s2,n	0.307	0.307
	est u,n	2.294	2,294
Monthly	Average =	24.678	36,000 ug/1

praft permit

Parameter: Zinc

Acute Wasteload Allocation (WLA,acute) = 240.00 ug/l
Chronic Wasteload Allocation (WLA,chronic) = 528.00 ug/l
Coefficient of variation (CV) of effluent = 0.60
Monthly sampling frequency required in permit = 1.00 samples/m

Back calculate the long term average (LTA)
that will meet both of the above WLAs:

	Acute	Chronic
	-	**
est s	0.555	0.555
est u, 4d	NA	5,586
est u, id	4, 191	5.476
LTA	77.060	278.485 ug/1

Lowest LTA =

77.060 ug/I

Using the lowest LTA and CV from above, derive the Maximum Daily and Monthly Average permit limits

- V	Percentile Basis			
•		95th Z'ile	99th Z'ile	
1 8	est s2	0.307	0.307	
	est u	4.191	4.191	
Maximum	Daily =	164.517	> 240.000	ug/l
Monthly	n =	1.000		
	est s2,n	0.307	0.307	
	est u.n	4.191	4.191	
Monthly	Average =	164.517	240.000	ug/l

proposed final punit = MAD . 165 mg/